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1. Introduction

The 2008 financial collapse of Lehman Brothers, the fourth largest US investment bank, contributed

to a global financial crisis and the worst economic downturn in the United States since the Great

Depression. [14] This recession was so devastating, in part, due to the wave of cascading financial

failures that the collapse of Lehman Brothers sent throughout the network of bank-to-bank lending.

To prevent the Great Recession from becoming the next Great Depression, the US government

passed the Emergency Economic Stabilization Act of 2008. This injected $700 billion into the

financial sector to bailout banks that were considered too big to fail. [10] While these bailouts were

expensive and controversial, they prevented further cascades of bank collapses, which would have

lead to an even worse economic crisis. [10]

The lending relationships between banks form a directed network and this network can play a

large role in preventing cascading bank failures like those that contributed to the recession. This

network is made up of banks which are connected by lending relationships. It is a critical component

of the economy, and can cause, or protect against, a global crisis. [14] Certain types of networks

can propagate negative financial shocks and lead to these cascading bank failures, like those seen

in the lead up to the 2008 financial crisis. [1] [13] [4] However, other types of networks can be

protected from such cascading failures.

This paper identifies the characteristics of bank networks that protect against financial crises.

The particular links that do exist and do not exist between individual banks in the network can

have an enormous effect on the macroeconomic outcomes in the financial sector. A working paper

by Luedtke (2019) shows that a change of one edge - one loan - can change the amount of loan

dollars that are repaid to the lending banks by an order of magnitude. [15] As a result, the

particular network of lending must be taken into account when protecting against the prospect

of cascading failures. Despite the key role that network structure plays in our ability to stabilize

the macroeconomy, little work has been done in using this network structure to accomplish this

stabilization. We find that the method we use for protecting against these cascading failures is

more efficient than bailing out banks considered too big to fail.

In this paper, we also explore how the structure of financial networks helps or hurts in the

face of negative financial shocks and also suggest and study a method to improve stability. We

contribute to the literature using financial networks to understand the strengths and weaknesses of

the macroeconomy. Financial networks can spread contagion, in the form of cascading delinquent
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loans, as the result of a negative economic shock. [12] [8] [2] But networks may also protect against

such contagion. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) characterize a level of network

connectivity for which the network protects against shocks rather than propagating them. [1]

However, they do not propose a method for protecting those networks that are vulnerable to the

effects of the negative shocks. We do so in this paper. The application of network theory to financial

questions has advanced our understanding of the macroeconomy and has allowed us to characterize

which network structures and characteristics play a role in propagating shocks. [13] [4] May et al.

(2008), Caldarelli et al. (2013), and Schweitzer et al. (2009) address network topology and its effect

on aggregate outcomes. [16] [7] See Chinazzi and Fagiolo (2013) for an excellent summary of this

body of work. [9]

The financial crisis brought issues of financial stability to the forefront. Brunnermeier (2009)

analyzes the role that liquidity and credit constraints played. [5] Gorton (2008) provides an in-depth

explanation of the subprime mortgage breakdown and its role in the crisis. [11] Sapienza and

Zingales (2009) discuss the amplifying role that the erosion of trust played in the worsening of the

crisis after the collapse of Lehman Brothers and the bailout of AIG. [18] Swagel (2009) outlines the

policy responses to the downturn. [17] Caballero et al. (2013) discusses the reforms of the financial

sector in response to the recession. [6] However, none of this work incorporates the role that the

network of lending could have played in stabilizing the economy.

We use a network model to find a method of strengthening the banking system. We define a

fortification as a set of nodes in a network such that every node in the network has an edge pointing

to a node in the fortification. In the context of a financial network, a fortification corresponds to

a set of banks such that every bank in the network is borrowing from a bank in the fortification.

In the model, the government - which is not a node in the network - can transfer resources to

ensure that the banks in the fortification can repay their loans. This can prevent cascades of

bank failures. The fortification is designed so that, regardless of where a bank failure occurs in

a fortified network, the negative shock from that failure cannot travel along more than one edge

of the network before encountering a stabilized bank. Such a targeted approach to identifying

banks and protecting financial networks can improve outcomes as well as decrease costs. This

concept exploits the amplification ability of networks: by saving only a small number of banks from

failure, the entire network can see a large reduction in bank failures and loan defaults. We find

that networks that are broadly interconnected but not concentrated around a few popular lenders

can be protected with the greatest success.
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Using a network model of interbank lending, loan repayment, and protection, we analyze the

success of fortifications. We treat the network - including banks, loans, and interest rates - as

exogenous and use the model of loan repayment described in Acemoglu et al. (2015). [1] The banks

in the model borrow money from one another. These loans are represented by the directed edges of

the network. Banks also invest in projects which have random returns, and the success or failure of

these projects contributes to the banks’ ability to repay their loans. After loans and investments

are made, the equilibrium loan repayments and project liquidation decisions are determined. If a

bank’s project yields a low return, the bank may fail to repay its loans in full, depending on the

structure of the network. This financial failure can lead to that bank’s lenders failing in turn. This

chain of failures to repay loans is how cascading failures occur.

To characterize the types of networks that can be most successfully fortified, we identify the

smallest possible fortification for a given financial network. When the banks in the fortification

receive resources to ensure that they repay the entirety of their loans, there are new equilibrium

loan repayment amounts and liquidation decisions. In this new equilibrium, the amount that each

bank is able to repay is no smaller than it was before the fortification. We identify the fortification

that is most successful at preventing delinquent loans. We define the success of a fortification as

the difference between the dollar value of loans not repaid without the fortification and the dollar

value of loans not repaid with the fortification. A more successful fortification leads to a larger

difference in loan repayments. The size of the minimal fortification, the cost of the fortification,

and the success of the fortification all depend on the particular network structure. This paper

identifies those networks that allow for the most successful, as well as the least costly, fortifications.

We analyze how network characteristics affect the number of banks needed to form a fortification

of a given network. Specifically, we look at the relationship between the degree distributions,

average path length, clustering coefficient and fortification size. We then analyze how successful

that fortification is at preventing bank failures. The degree distributions describe the number of

lenders and borrowers of each bank in the network. The path length measures how close one bank

in the network is to any other, i.e., it describes how spread out the network is. The clustering

coefficient is also a measure of network connectivity, but describes how concentrated the banks are

around a few, very popular lenders or borrowers. Path length captures how interconnected every

part of the network is to every other part. If we wanted to walk along the links of the network

from one bank to another, how many links would we be walking along, on average? The clustering

coefficient measures the degree to which banks have separated into cliques. If we fortify a bank in
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a tightly grouped clique, is the benefit of that fortification going to get trapped in the the clique

and never make it out to other banks in the network?

We simulate the model by generating example financial networks and fortifying them. In each

repetition of the simulation a random financial network is generated, including loans and loan

amounts. For each network, we measure the degree distribution, average path length, and clustering

coefficient and determine the unfortified repayments and liquidation decisions. All possible minimal

fortifications for that particular network are found. For each of these fortifications, we compute the

associated new repayments and liquidation decisions.

Fortifications work well on average but there is substantial heterogeneity in fortification success

depending on the particular financial network in question and the individual banks that are fortified.

The same network can see an improvement in loan repayment as high as $5 billion or see no

improvement at all, depending on the banks included in the fortification and on the structure of

the network. We find that the networks that allowed for the smallest fortifications were those that

were highly interconnected but not tightly clustered around a few large banks. That is, networks

that have many connections that are distributed evenly amongst the banks, without separated

clusters of banks, are the easiest to fortify with a small number of banks. Networks with a few

large banks that lend to many others, are the most difficult to protect. In contrast, those without

such hub lenders were the easiest to protect. The simulation results also indicate that fortifications

of most networks do not require many banks. Across all of the simulation repetitions, the average

fortification size was only 3.26 banks, representing only 13% of the banks in the network.

In addition to requiring only a few banks, fortifications are cost-effective; every fortification in

the simulation saved more money in repaid loans than it cost to fortify the banks in it. On average,

fortifications saved over $2 for every dollar spent. Furthermore, it is the same types of networks

that allow for small fortifications that can be fortified with the greatest success. Financial networks

that are closely connected but not tightly clustered see the largest improvements in loan repayment.

These results suggest that the interbank lending networks that are very interconnected but not

concentrated around a small number of hub lenders are those that can be protected with the lowest

cost and with the greatest success.

As a robustness check, we compare our fortification method to two other methods of financial

stabilization. The first alternative is to simply choose a random set of banks and cover their

shortfalls. The financial process is the same as in a fortification but ignores the structure of the

network in choosing the banks. Fortifications outperform these randomly chosen banks. On average,
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fortifications save more money - $670 million more on average - and prevent more banks from failing.

The second alternative is a bail out of the most connected banks. These banks correspond to those

that would be considered "too big to fail." Fortifications are more efficient than a set containing

the most connected banks. They save more money in repaid loans per dollar spent. On average,

fortifications are about 30% more efficient. By taking advantage of the entire network structure

rather than simply considering which banks have the most lending partners, fortifications are a

more frugal but still successful method of protecting the financial network from cascading failures.

Finally, we identify the minimal fortification of a historical financial network and find that

financial networks that are not very interconnected do indeed require larger fortifications, as our

simulation results indicate. We use data on interbank lending relationships in Pennsylvania and

New York in 1867, as presented in Anderson, Paddrik, and Wang (2019). [3] This financial network

is sparse; there are relatively few loans and the banks in the network are not very close to one

another in terms of network distance. As a result, the fortification of this network is large. To

fortify the 54 banks who borrow from other banks requires a fortification set that contains 37 of

the 54 banks. This is consistent with the simulation results: networks that are spread out and not

relatively interconnected require larger fortifications.

The remainder of this paper proceeds as follows. Section 2 describes the model of the interbank

network, lending, repayment, and fortification. Section 3 describes simulations of this model and the

results of these simulations, including comparisons to alternative methods of network stabilization.

Section 4 presents a case study in which we find the fortification of a real, historical, financial

network. Section 5 concludes.

2. Network Model

2.1. Model of Lending and Repayment

We use a model of interbank lending that describes the loans between banks using a directed

network. The banks are represented by the nodes of the network and the directed edges represent

loans from one bank to another.

A network G consists of a set J of nodes indexed j = 1 . . . n and a set of directed edges between

them. Let ij denote a directed edge from node j to node i. Figure 1 depicts a network with 10

nodes and 31 edges. We use N+
j (G) to describe the set of edges in G that point to node j and
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N−j (G) to describe the set of edges in G that point away from node j.

N+
j (G) = {ji ∈ G}

N−j (G) = {ij ∈ G}

Let Nj(G) be the set of all neighbors of node j regardless of edge direction, Nj(G) = N+
j (G)∪N−j (G).

For example, in the network depicted in Figure 1, N+
2 (G) = {4, 8, 10}, N−2 (G) = {4}, and thus

N2(G) = {4, 8, 10}.

Figure 1: Network of Lending

Figure Note:This example network contains ten nodes, labeled "1", "2", etc., with directed edges between
them. The arrows on the edges indicate the directions of the edges.
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The agents of the model are n banks, represented by the n nodes, which borrow money from

one another and make liquidation decisions about investment projects based on their ability to

repay their loans. A directed edge from bank j to bank i indicates that bank j borrowed from

bank i and now must repay the loan with interest to bank i. That is, arrows indicate the flow of

repayment. We use the model of loan repayment described in Acemoglu et al. (2015). [1] Each

bank in the model borrows money from at least one other bank and has invested in an outside

project. Each bank j is endowed with kj dollars of capital that are allocated between loans and

investment projects. Whatever capital is not loaned to other banks or invested in an outside project

is held by the bank in cash. The projects yield random returns which determine how able each

bank is to pay back its loans.

The network of loans is described using a matrix, Yij = [yij], containing the face values of the

loans, i.e., what must be repaid. Each element, yij , of this matrix describes the amount that bank j

owes to bank i in repayment after borrowing a loan amount of lij. That is yij = (1 + ρij)lij, where

ρij is the interest rate on the loan from i to j. If bank j did not borrow from bank i then yij = 0.

We do not allow for self loops so yjj = 0 ∀j ∈ J . Let yj =
∑

i(yij). This is the total amount that

bank j owes in repayments to lenders.

Figure 2 depicts the same network as Figure 1, but with edge weights indicating loan amounts.

Each loan is for $100 and has an interest rate of 2.7%, thus each loan has a face value, yij = 102.7.
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Figure 2: Network of Lending with Loan Amounts

Figure Note:This network has the same nodes and edges as in Figure 1, but includes the loan amounts for
each directed edge.

Each bank, j, invests in an outside project and the success or failure of these projects determine

the banks’ abilities to repay their loans. The bank observes a preliminary random return, zj, on

the project and decides whether to liquidate or not. If they choose not to liquidate, they earn a

fixed, non-pledgeable payout of Aj. If they choose to liquidate, they can recoup a fraction, ξj, of

this yield.

Each bank holds an amount, cj, of their funds in cash and has an outside obligation to their

senior creditors, vj, that they must pay before they repay their loans. This primary obligation
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can be interpreted as the bank’s costs of operation, including wages, rent, etc. Label the bank’s

available resources at the time of repayment if they do not liquidate as hj = cj + zj +
∑

i rji.

First loans and investments are made. The network of loans is treated as exogenous. Then,

random returns are observed, liquidation decisions are made, and loans are repaid. Finally, any

projects held to maturity yield their return, Aj. All repayment and liquidation decisions by all

banks are made simultaneously. Banks take their future yields into account, but make repayment

decisions before they are recieved. Following Acemoglu et al., the equilibrium repayment amounts

are determined by

rij =
yij
yj

max
{
min{yj, hj + ξjLj − vj}, 0

}
and the liquidation decisions are determined by

Lj = max
{
min{ 1

ξj
(vj + yj − hj), Aj}, 0

}
.

There is an equilibrium repayment amount, rij ∈ [0, yij ], for each loan and a liquidation decision,

Lj ∈ [0, Aj], for each bank. If a bank has the resources to meet all of its liabilities at the time of

the repayment, i.e. hj > vj +
∑

i(yij), then all loans are repaid in full, rij = yij, for each bank i to

which bank j owes a repayment. If hj ≤ vj +
∑

i(yij), the bank must either partially liquidate its

project to cover the difference or liquidate entirely and pay back what it can. If a bank is able to

meet its senior obligation, vj, but not its loans, the repayments are made in proportion to their

face values.

These equations describe how funds - or lack of funds - travel between banks. If bank j is

unable to repay its loans in full, this shortfall propagates to bank j’s lenders and they in turn

may not be able to pay their loans in full, and so on throughout the network. Figure 3 depicts

the equilibrium repayment amounts for the network of loans depicted in Figure 2 and the model

paramterization used in Section 3. Many of the banks in this example are unable to repay their

loans in full. For example, Bank 9 is only able to pay Bank 5 $26.89 of the $102.7 that they owed.
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Figure 3: Repayment Equilibrium

Figure Note:The numbers on the edges are the equilibrium repayment amounts for the example network
depicted in Figure 2.

A bank failure occurs when any bank is unable to repay its loans in full. Any such bank

failure can lead to a cascade of failures as the lenders who are not repaid in full in turn are

unable to repay their own loans in full. The repayments are determined simultaneously so these

cascades do not occur sequentially in time, but rather result from the interrelated nature of the

lending network. Let d denote the total dollars not repaid in the payment equilibrium for a

given network, d =
∑n

j=1

(∑
i 6=j yij − rij

)
. In the repayment equilibrium depicted in Figure 3,

d =
∑10

j=1

(∑
i 6=j 102.7−rij

)
= 2, 104.4. Of the 102.7×31 = 3, 183.7 dollars owed in loan repayment,

2, 104.4 of those dollars were not repaid in this example.
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2.2. Fortifications

To limit these cascading bank failures, we delineate a set of nodes to bolster in the face of financial

difficulty. We define a fortification to be a set, F , of nodes in a financial network such that every

node in the network has an edge pointing from it to a node in F . This set is similar to the

open-locating dominating (OLD) sets used in the graph-covering literature in mathematics. See

Kincaid, Oldham and Xu for an example. Fortifications differ from OLD sets in that (1) they are

defined for directed networks rather than undirected networks, and (2) they specify a direction

(in-pointing) for the neighbor in the covering set. In the network depicted in Figure 1 the nodes 2

and 3 constitute a fortification.

The government transfers resources to the banks in the fortification to ensure that they pay

their loans in full. Therefore, regardless of where a financial failure occurs, it can travel no further

than one lending relationship before it encounters a fortified bank, thereby stemming the flow of

financial failures from bank to bank throughout the network. Note that this does not ensure that

a failure stops after one link of the network. The definition of a fortification merely ensures that

the financial failure will encounter at least one fortified bank for every link it travels. Every bank

has a fortified lending partner, so for every additional link along which the failure cascades, it is

guaranteed to encounter at least one more fortified bank.

The minimal fortification is the smallest possible set of nodes that satisfies the definition of a

fortification. There may be multiple minimal fortifications of the same size for any given network.

For example, the network depicted in Figure 1 has four minimal fortifications, each containing four

nodes: {4, 7, 8, 9}, {2, 4, 7, 8}, {1, 4, 7, 9}, and {1, 2, 4, 7}. The smallest possible fortification for any

network must contain at least two nodes. This is because no bank lends to itself. So if a single

bank (node) lends to every other bank - and therefore satisfies the definition of a fortification for

(or covers) every other node in the network - the fortification will still need one more node to cover

the original node.

The cost of a fortification is the total difference between what the fortified banks owe and their

equilibrium repayment amounts.

costF =
∑
f∈F

(∑
j 6=f

(yjf − rjf )
)

The total cost of a fortification depends on the number of banks in the fortification as well as
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how far those banks are from repaying their loans in full. For a given network, two fortifications of

the same size may have widely different costs. For example, the cost of the first fortification of

the network depicted in Figure 1, {4, 7, 8, 9}, is $944.78. Additionally, the cost of a fortification

may be 0. This occurs when the particular banks in the fortification already pay their loans in full,

regardless of whether other banks in the network are able to repay their loans in full.

There is a new payment equilibrium associated with any fortification. Denote the repayment

and liquidation decisions associated with a particular fortification, F , be r̃ij
F and L̃j

F
, respectively.

Figure 4 depicts the fortified repayment equilibrium using the first fortification, {4, 7, 8, 9}. The
nodes in the fortification are designated with larger node markers and in red. Following the same

notation, define d̃F to be the total dollars not repaid in the fortified payment equilibrium. Before

the fortification, $2, 104.4 were not repaid. After the fortification, only $459.24 are not repaid. In

the fortified payment equilibrium, no bank repays less than they did in the unfortified network.

That is, d̃F ≤ d.
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Figure 4: Fortified Repayment Equilibrium

Figure Note:The nodes highlighted in red and with a larger marker size represent one of the minimal
fortifications of this example network.

How successful a fortification is at stymieing financial failures varies between different fortifica-

tions of a given network. Define the success of a fortification, sF , to be the difference between the

total dollars not repaid in the original payment equilibrium and the total dollars not repaid in the

fortified payment equilibrium: sF = d− d̃F . The success of the fortification used in the previous

example is sF = d− d̃F = 2104.4− 459.24 = 1, 645.16.

The ratio of fortification success to fortification cost describes the dollars saved per dollar spent

on a fortification. Define the efficiency of a fortification to be the this ratio: eF = sF

costF
. The most

efficient fortifications are those that lead to a large amount of money being repaid that would not
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have been repaid without the fortifications while simultaneously costing the government as little as

possible. The efficiency of the fortification used in the previous example is eF = sF

costF
= 1645.16

944.78
= 1.74,

so this fortification saved $1.74 for each dollar spent.

2.3. Network Characteristics

The number of fortifications, the cost of each fortification, and the success of each fortification all

depend on the structure of the financial network in question. We investigate how these outcomes

depend on several different network characteristics: in-degree and out-degree distributions, path

distance, and clustering coefficient.

The in-degree of a node is the number of edges pointing to that node: in − degi = |N+
i (G)|.

The out-degree of a node is the number of edges pointing from that node: out− degi = |N−i (G)|.
The in-degree and out-degree distributions are the sets of in-degrees and out-degrees for every node

in a network G, respectively. In a financial network, the mean of the in-degree distribution is the

average number of borrowers each bank has, while the mean of the out-degree distribution is the

average number of lenders each bank has.

In addition to the mean, we consider the variance and skewness of the degree distributions, as

well. The variance describes how widely the number of lenders per bank and the number of borrowers

per bank varies. A higher variance indicates that some banks have very few lenders/borrowers and

some banks have many. The skewness describes how skewed the degree distribution is. A positive

skewness indicates that the distribution is skewed left - many banks have a low number of lenders

or borrowers, while a negative skewness indicates that the distribution is skewed right - many banks

have a high number of lenders or borrowers.

The undirected1 shortest path between two nodes in a network is the smallest sequential set

of nodes and edges between those two nodes, regardless of the direction of the edges. We use the

average of all of these shortest paths to measure how widely spread the nodes of the network are.

The path distance of the network depicted in Figure 1 is 1.4286, so on average it takes between

1 and 2 links to get from one node in the network to another. A longer average path distance

indicates that the network is more widely spread; it takes more edges, on average, to get from one

node to another. In a financial context, a longer average path distance indicates that the network
1We use the undirected path distance and clustering coefficients because they are always defined for a connected

directed network, while their directed counterparts may be infinite or undefined for such a network

14



of loans is less interconnected in general.

The undirected local clustering coefficient describes how tightly grouped, or cliqueish, the nodes

of a network are. Specifically, for a given node in a network, the individual clustering coefficient

computes the fraction of possible triangles that are actually present in the network. For a node i,

suppose that there is an edge between i and j as well as between i and k (ignoring direction). The

clustering coefficient of i computes the fraction of the time that there is an edge between j and k,

as well. Let {ij} be the undirected counterpart of an edge either from i to j or from j to i.

cci(G) =
#{{jk} ∈ G : k 6= j, j ∈ Ni(G), k ∈ Ni(G)}
#{{jk} : k 6= j, j ∈ Ni(G), k ∈ Ni(G)}

The local clustering coefficient is then the average of these individual clustering coefficients

across all nodes in the network, G.

cc(G) =

∑
i∈J cci(G)

n

The clustering coefficient for the network depicted in Figure 1 is 0.5921, so the third edge of a

possible triangle occurs about half of the time. A larger clustering coefficient in a financial network

indicates that if two banks have a lender or borrower in common, those two banks are more likely

to lend or borrow from one another.

In the next section, we explore the connection between these network characteristics and the

size, cost, and success of fortifications.

3. Simulation Results

We simulated the model of loan repayment and financial network fortification described in the

previous section. We generated negative financial shocks and computed the network characteristics

described in Section 2.3 to understand what role these characteristics play in the ease of fortifying

the financial networks.

In each simulation repetition, we generated a random financial network with 25 banks. With no

self-loops, a network of 25 nodes may have up to 25× 24 = 600 edges. In our simulation, three

different numbers of edges were used: in one third of the repetitions 25% of the possible edges were

used, in one third 50% of the possible edges were used, and in one third 75% of the possible edges
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were used. We simulated 100 repetitions for each number of edges, for a total of 300 repetitions.

Of the 600 possible edges, the appropriate number were selected randomly and uniformly without

replacement. In 2 of the repetitions, the network that was generated was not fully connected

and therefore those repetitions was dropped from the sample, for a total of 298 random financial

network observations.

Each edge in the network represents a loan from one bank to another. Each loan was for $100

million and the interest rate on each was 2.7%. Because each value of [yij ] is the same, the financial

network is said to be regular. We used regular networks so that changes in outcomes were strictly

driven by differences in network structure rather than by the loan values or the interest rates. The

details of the model parameterization can be found in the Appendix.

In each of the repetitions, we found all of the minimal fortifications for the network and the cost

and success of each fortification. We recorded the in-degree and out-degree distributions - including

the mean, variance, and skewness of each distribution - as well as the average path length and

clustering coefficient of each network. We investigate the relationship between these characteristics

and the size and success of the fortifications.

3.1. Fortification Size

The average size of the minimal fortification across the 298 repetitions was 3.26, which represents

13% of the 25 banks in the network. The smallest possible size of a fortification, 2, was achieved in

35.91% of the repetitions. The percentage of fortifications containing 2 banks increases with the

number of edges present in the network. None of the fortifications of the networks with 25% of the

edges contained only 2 banks, 2.35% of the networks with 50% of the edges contained 2 banks, and

33.56% of the networks with 75% of the edges contained only 2 banks.

The cost of fortifications - the amount by which the fortified banks were short on their loans -

varied widely across simulation repetitions as well as within individual networks. The mean cost

across all fortifications in all repetitions was $652.39 million, or about six times the loan size. The

average cost of the most expensive fortification available for a given network was $1.25 billion, or

about ten times the loan amount, while the average cost of the least expensive fortification available

for a given network was only $269.30 million. It is common for the least expensive fortification to

be zero-cost; the modal cost of the least expensive fortification available for a given network was 0.

On average, there were 31.88 different minimal fortifications for each network. There were as
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few as one single fortification for a particular network and as many as 276.

Below are the results of a linear regression of fortification size on the network characteristics

described in the previous section and indicator variables for the number of edges used. The 50%

case is omitted as the base case, so the coefficient on the 25% edge indicator variable can be

interpreted as the effect of having relatively few edges present in the network and the coefficient on

the 75% edge indicator can be interpreted as the effect of having relatively many edges present.

The mean of the degree distributions is omitted because it always takes on the same value for a

given number of edges and is therefore perfectly collinear with the edge indicator variables.

Table 1: Fortification Size Regression Results

Network Characteristic Coefficient

Edge % = 0.25 1.53

Edge % = 0.75 −1.00

In-Degree Distribution Standard Deviation −0.26

In-Degree Distribution Skewness < 0 −0.10

Out-Degree Distribution Standard Deviation 0.06

Out-Degree Distribution Skewness < 0 −0.11

Average Path Length 2.13

Clustering Coefficient 2.02

Constant −0.71

As the number of edges in the financial network increases, the number of banks in the fortification

falls. Compared to the base of half of the possible edges, a relatively small number of edges, 25%,

leads to a larger fortification. On average, the fortification contains 1.53 more banks. In the other

direction, when there are 75% of the possible edges, the fortification contains fewer banks, 1.0

banks on average. When there are more loans throughout the the network, it is easier to fortify

with fewer banks.

17



The presence of many hub lenders and borrowers decreases the size of the minimal fortification.

A negative skewness indicates that the degree distribution is skewed right. This corresponds to

a larger number of banks lending to or borrowing from many other banks. A negative skew in

the in-degree distribution decreases the fortification size by 0.10 banks, on average. Similarly, a

negative skewness in the out-degree distribution decreases the number of banks in the fortification

by 0.11 on average.

A financial network that is more connected but not tightly clustered allows for smaller for-

tifications. When the average path length increases by one link, the fortification grows by 2.13

banks on average. When it takes longer to get from one node in the network to another - when the

network is more spread out - the fortification is larger and when the network is less widely spread,

it allows for a smaller fortification. When the network is more tightly clustered around a small

number of lenders or borrowers, the fortification is larger. A one unit increase in the clustering

coefficient is associated with an increase in fortification size of 2.02 banks. These results indicate

that a network that is relatively well connected but in a uniform way, without hubs, will allow for

smaller fortification.

3.2. Fortification Success

The amount of money that a fortification saves in loans that are now able to be repaid that were

not repaid before also varies widely across and within networks. A given network can be fortified

very successfully or very unsuccessfully depending on the particular banks used in the fortification.

On average, the most successful fortification for a given network leads to $3.05 billion being repaid

that were not repaid without the fortification. The least successful fortifications, however, only

saved $798 million on average and only saved a few cents in some cases. The standard deviation

of the fortification success is on average $615 million; there is a wide spread in the success of a

fortification.

Successful fortifications are often costly. The most successful fortifications for a given network

cost an average of $1.24 billion. In 247 of the 298 repetitions, the most successful fortification was

also the most expensive fortification. In only 27 repetitions was it the least expensive fortification.

However, every fortification saved more money than it cost to fortify. Every fortification in the

sample had an efficiency greater than 1 and, excluding zero-cost fortifications, the average efficiency

was 2.50, meaning that on average a fortification saved over $2 in newly repaid loans for every
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dollar spent to fortify the banks in it.

Below are the results of a linear regression of the amount of money saved by the most successful

fortification on the fortification size, the indicators for the number of edges, and the network

characteristics. Because the dependent variable, fortification success, is measured in millions of

dollars, coefficients can be interpreted as the increase or decrease in money saved in millions of

dollars.

Table 2: Fortification Success Regression Results

Network Characteristic Coefficient

Fortification Size 1966.50

Edge % = 0.25 −4521.80

Edge % = 0.75 3424.10

In-Degree Distribution Standard Deviation 209.02

In-Degree Distribution Skewness < 0 52.63

Out-Degree Distribution Standard Deviation 965.22

Out-Degree Distribution Skewness < 0 −266.64

Average Path Length −7919.50

Clustering Coefficient −17942.00

Constant 15769.00

As the number of edges present in the financial network increases, so does the success of the

fortifications of the network. A network with only 25% of the possible edges saves $4.52 billion

less relative to the base case of 50% of the edges, while a network with 75% of the possible edges

saves $3.42 billion more than a network with 50% of the edges. When there are more edges in the

network to connect the banks, the fortification can save more money.

The presence of many hub lenders increases the success of fortifications while the presence of hub

borrowers increases it. When a network features a negative skewed in-degree distribution - many
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banks that lend to many other banks - fortifications save $52 million more relative to a positive

skew or no skew. However, when a network features a negatively skewed out-degree distribution -

many banks that borrow from many other banks - fortifications save $267 million less.

The effect of the average path length and clustering coefficient on fortification success reflect

the fortification size results. A more closely connected network that is not tightly clustered will be

more successfully fortified. An increase in the average path length of one link is associated with an

decrease in new repayment of $7.92 billion, so a longer path length is associated with lower savings

and a shorter path length is associated with higher savings. A one unit increase in the clustering

coefficient is associated with a decrease in new repayment of $17.94 billion. A network that is not

widely spread out and not disproportionately clustered around a few key banks will have more

successful fortifications. Such a network is likely to have a small fortification that saves a great

deal of money in previously unpaid loans.

In general, if a network characteristic leads to smaller fortifications, it also leads to more

successful fortifications. That is, if the coefficient is negative in the fortification size regression, it is

positive in the fortification success regression. However, the out-degree distribution is an exception

to this. More hub borrowers lead to smaller fortifications but they also lead to less successful

fortifications.

A fortification with more banks in it generally saves more money across the entire network. An

increase in the fortification size by one bank leads to an increase in repayment of $1.97 billion on

average. In this paper we only consider fortifications of the smallest number of banks allowed by

the network. This result suggests that more research is needed to investigate whether the cost of

fortifying more banks may be offset by increased savings.

3.3. Performance Comparisons

We compare the performance of fortifications to two alternatives. The first is a random set of banks

of the same size. For each repetition of the simulation, a set of banks is chosen randomly and

uniformly from the universe of banks and this set contains the same number of banks as the most

successful fortification in the repetition. If any of these banks are unable to repay their loans in full,

and if this shortfall is covered by the government as in a fortification, how does the performance of

these two methods compare in terms of cost, efficiency, money saved in newly repaid loans, and

banks saved from failure?
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We also compare the performance of fortifications to that of a set containing the most connected

banks in the network. Banks are ranked by their out-degree and banks are added to a set in order

of highest out-degree until that set contains as many banks as the most successful fortification

in the repetition. For example, if the fortification contains three banks, then this alternative set

contains the top three most connected - in terms of out-degree - banks. As with fortifications and

the set of random banks, any shortfall in loan repayment on the part of these most connected banks

is covered and the ensuing increase in financial stability is compared to that of fortifications.

Figures 5 and 6 compare the measures of success for these two alternatives to those for the

corresponding fortification. Figure 5 contains box plots that compare the money saved, cost, banks

saved, and efficiency of fortifications and the random set of banks. Figure 6 contains box plots that

compare the same measures between fortifications and the set of most connected banks. Tables

3 and 4 summarize the average money saved, cost, banks saved, and efficiency for each of these

methods. All of the differences listed are statistically significantly different from zero. That is, the

differences between fortification and the alternatives are statistically significant.
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(a) Money Saved (b) Cost

(c) Banks Saved (d) Efficiency

Figure 5: Comparison of Fortifications vs. Random Banks

Figure Note:These four box-and-whisker plots depict the differences in performance between fortifications
and a random set of banks.
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(a) Money Saved (b) Cost

(c) Banks Saved (d) Efficiency

Figure 6: Comparison of Fortifications vs. the Most Connected Banks

Figure Note:These four box-and-whisker plots depict the differences in performance between fortifications
and the most connected banks.

Compared to a set of the same size but containing randomly selected banks, fortifications save

more money. On average, fortifications save $670.62 million more than a random set of banks.

This is because a random set of banks will not be connected by loan contracts to as many other

banks as those in a fortification. Any funds that help a random set of banks will not have the same

stabilizing influence as those used in a fortification because they will not propagate as far.

In addition to saving more money, fortifications save more banks from failure compared to a

random set of banks. On average, fortifications save 0.69 more banks. As with money saved, this is

driven by fortification-banks’ centrality and influence on other banks’ ability to repay loans.

Fortifications also cost more than a random set of banks. In general, fortifications cost $305.43
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million more. The reason fortifications are more successful in saving money and banks is the same

reason that they tend to be more costly: banks in a fortification tend to be more central and

connected to other banks both in lending and in borrowing. They tend to borrow money from

more banks and therefore they have larger liabilities; however, covering those liabilities benefits

more banks than covering the liabilities of randomly selected banks.

Perhaps counter-intuitively, on average, a random set of banks saves more money per dollar

spent than a fortification. That is, the random set has a higher efficiency. However, this is simply

the result of the low cost of covering the loan shortfall of random banks. They save a small amount

of money and cost almost nothing. Fortifications save significantly more money and banks, while

costing more to do so.

Table 3: Fortifications vs. Random Banks

Fortification Random Set Difference

Money Saved (millions of dollars) 3, 046.93 2, 376.31 670.62

Banks Saved 5.68 4.99 0.69

Cost (millions of dollars) 1, 235.35 929.92 305.43

Efficiency 2.50 2.63 −0.13

Table 4: Fortifications vs. Most Connected Banks

Fortification Most Connected Difference

Money Saved (millions of dollars) 3, 046.93 4, 137.78 −1, 090.85

Banks Saved 5.68 7.60 −1.92

Cost (millions of dollars) 1, 235.35 1, 919.55 −684.20

Efficiency 2.50 2.21 0.29

Compared to a set of the most connected banks, fortifications save less money and fewer banks.

On average, a set of the most connected banks saves $1.09 billion more than the corresponding
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fortification. Additionally, they save 1.92 more banks from failure. Because these banks are the

most connected in the network, they have a direct and strong effect on the other banks in the

network and on those banks’ ability to repay their loans.

These most connected banks are also more costly to stabilize. To cover the shortfall of these

highly connected banks costs on average $684.20 million more than to pay for the fortification.

They are costly for the same reason they save so much money and so many banks: they are very

highly connected.

Finally, fortifications are more efficient than a set of the most connected banks. On average,

fortifications save $0.29 more for every dollar spent. Fortifications, while not saving as much money

in repaid loans in total as compared to the most connected banks, still save $3.05 billion and they

do it at a lower cost. A dollar spent on a fortification goes farther in stabilizing the financial

network.

Fortifications save more money in loan repayments and more banks from failure than a randomly

selected set of banks and are more efficient than a more costly set of highly connected banks.

4. Case Study: US Financial Network in 1867

We use a historical data set describing interbank debts to analyze the fortification of a real financial

network. Anderson, Paddrik, and Wang (2019) describe the network of lending between banks in

Pennsylvania and New York City in 1867, following the National Banking Acts in 1863 and 1864. [3]

We use network linkages constructed from the Reports of the Several Banks and Savings Institutions

of Pennsylvania (1863, 1868) and the National Banks Examination Reports that resulted from the

National Banking Acts. Figure 7 depicts this network consisting of 202 banks. We use this network

to find a fortification of those banks engaged in interbank lending.
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Figure 7: Pennsylvania and New York Financial Network (1867)

Figure Note:This is the financial network comprised of a set of banks in Pennsylvania and New York in
1867.

There is little data available describing real financial networks. While the data we use in this

paper is from 152 years ago, the presence of any data from Anderson, Paddrik, and Wang (2019)

represents a significant improvement in financial network research. Additionally, the banks included
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in this sample cover a wide variety of bank types, ranging from local banks to large financial center

banks. [3] This data allows us to demonstrate how the fortifications of real world networks can be

constructed and that our simulation results are reasonable.

Not every bank in the network described by the data borrows money from another bank. As a

result, not every bank in the network will have a neighbor in the fortification. Only banks who

borrow from at least one other bank will have such a neighbor. Of the 202 banks in the network,

only 54 of them borrow from at least one other bank. The average bank has only 1.07 debtor-banks.

Figure 8 depicts the out-degree distribution of the network. That is, it depicts a histogram of the

number of banks to which other banks owe loan repayments. The modal out-degree is 0, meaning

the most common number of debtor-banks is none.

Figure 8: 1867 Financial Network Out-Degree Distribution

Figure Note:The out-degree distribution describes the frequency of a given number of edges pointing away
from a node in the network.

The minimal fortification of the 54 banks engaged in borrowing contains 38 nodes. In Figure

9, nodes in the fortification are highlighted with a larger node size and colored red. This large

fortification is the result of the lack of connectivity in the network. Not only are there relatively

few banks borrowing from one another but furthermore, very few borrow from the same bank. Of

the 38 banks in the fortification, only 9 cover more than a single bank.
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Figure 9: Fortification of 1867 Financial Network

Figure Note:The nodes highlighted in red and with a larger marker size represent the minimal fortification
of the financial network depicted in Figure 7.

These results are consistent with the simulation results discussed in the previous section. The

number of edges (loans) present and the distance between banks in the network both play a large

role in determining the fortification size. A network of 202 nodes with no self-loops can have up
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to 202× 201 = 40, 602 edges. This network has only 216, representing 0.5% of the possible edges.

Additionally, because this network is not made up of a single connected component, a path does

not exist from every node to every other node, and as a result the path distance is defined to be

infinite. Both of these characteristics contribute to the large fortification relative to the number of

borrowers. This is consistent with the simulation results regarding fortification size. As discussed

in Section 3.1, as the number of edges present decreases, the size of the fortification increases.

Similarly, as the path distance of a network grows, so does the fortification size.

5. Conclusion

In the face of recent research that identifies the financial networks that are most vulnerable to

cascading financial failures, this paper identifies those networks that can be most successfully

protected from such cascades. Networks that are globally interconnected but not overly cliqueish

allow for the least costly and most successful stabilization. The method of stabilization presented in

this paper performs well in comparison to alternative methods. Fortifications save more money and

banks than a random selection of protected banks. Furthermore, fortifications are more efficient

than protecting the banks with the most lending partners, that is, those that would be "too big

to fail." The fortification of a real historical network is consistent with the simulation results; a

network that is very disconnected requires a fortification containing many banks. Fortifications can

work well at stabilizing financial networks, but in order to achieve that, we need to analyze the role

that network structure plays in fortification success.
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6. Appendix

6.1. Model Parameterization in Simulations

Table 5: Model Parameterization

Parameter Value

Number of Banks, n 20

Loans size, lij, in millions of dollars 100

Interest rate, ρij = ρ 0.027

Negative shock, zj 0.01

Mature project yeild, Aj, in millions of dollars 7

Fraction recoverable, ξj 0.4

Cash held, cj, in millions of dollars 3

Senior creditor obligation, vj, in millions 10

The data generated in the simulations are available from the author upon reasonable request.

Declarations of interest: none

33


	Introduction
	Network Model
	Model of Lending and Repayment
	Fortifications
	Network Characteristics

	Simulation Results
	Fortification Size
	Fortification Success
	Performance Comparisons

	Case Study: US Financial Network in 1867
	Conclusion
	Appendix
	Model Parameterization in Simulations


