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Abstract

Little data exists describing the links of the US financial network. Using a computational
model of interbank lending, we show that this lack of data can lead to erroneous model
predictions. We find that missing a single loan in the network can lead to large differences in
the predicted aggregate repayments across the entirety of the network of banks. This missing
data could mean implementing policies that are designed to improve macroeconomic stability,
but that could actually lead to substantial destabilization.
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1. Introduction

Since the 2008 financial crisis, macroeconomists and policymakers have been working to prevent

such a financial disaster from ever occurring again. With the collapse of Lehman Brothers in

September of 2008, an inability to repay debts spread like a contagion throughout the financial

sector. Banks across the country struggled, and many followed Lehman Brothers in declaring

bankruptcy. These cascading bank failures were one of the reasons that the Great Recession was so

devastating (Lioudis 2019). The US saw double-digit unemployment, home values fell by 40%, and

savings and retirement account balances dropped by almost a third (Silver 2019). These effects were

especially felt by groups historically excluded from the banking system (Blanco, Contreras, and

Ghosh 2022). Preventing such a downturn from happening again is an important task for economic

researchers and policymakers. With the 2023 collapse of Silicon Valley Bank and Signature Bank

came renewed fears of financial contagion and a renewed focus on preventing cascading bank failures

(Sherter 2023). Accomplishing this task requires a thorough understanding of the particular lending

relationships that exist between banks. This paper demonstrates the effect that missing data can

have on our ability to prevent financial contagion.

Theoretical work has been done to understand how the the interbank lending network as a

whole affects financial stability (Jackson 2010; Schweitzer et al. 2009; Hasman 2013). Researchers

have characterized the simultaneously robust yet fragile nature of networks in the face of negative

shocks (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015; Chinazzi and Fagiolo 2013). If the interbank

lending network is too interconnected, it serves to propagate the shock to many banks throughout

the network. If it is not interconnected enough, banks must rely on only a few banks for repayment

and are particularly vulnerable to the shocks. However, little empirical work exists on this question

because there is no data set that describes the specific loan relationships that exist in the US

financial system.1

This paper explores the effect a single link in the network can have on financial outcomes,

such as loan repayment and bank default. To do this, we adapt the network model of interbank

lending described in Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015. While Acemoglu and co-authors

use this model to explore the effect of the overall structure of the network on financial stability,

we use the model to understand how small changes in the bank-to-bank loan relationships affect
1This is not true for all countries. Imai and Takarabe (2011) use data describing banks in Japan to investigate

whether banking integration contributes to the propagation of financial contagion (Imai and Takarabe 2011).
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aggregate financial outcomes. Ours is a bottom-up analysis of the effect of micro-level changes on

macroeconomic outcomes. We use this model because it is well-established in the financial network

literature and will allow for a focus on the specific loans that do and do not exist.

In the model, banks lend to one another. These loans between the banks create links, and all of

these links and banks taken together constitute a financial network. The banks invest in projects

outside of the network, and these projects have random returns. The results of these investments,

along with the banks’ other assets, determine the amount of their loans that banks are able to repay

in equilibrium. When the random returns are particularly low, this creates a negative financial

shock, and these shocks can travel throughout the network via the loan relationships. This is how

cascading financial failures occur.

In the following section, we describe an example that demonstrates how the particular links of

the network affect loan repayments. This example shows the mechanisms by which large changes

in loan repayment and bank stability can result from small changes in who borrows from whom. In

this example, the addition of a single borrower increases a bank’s equilibrium repayment amount

to its lender. This, in turn, increases the lender’s repayment, the lenders’ lenders’ repayments, and

so on. This demonstrates how missing a single loan in the data can lead to dramatically under - or

over-estimating the financial well-being of the banking sector.

Next, we calibrate and simulate the model. We generate many random networks of loans,

implement a negative financial shock, and measure the amount of repayments each bank is able to

make across the network. We then add a link/loan between two randomly chosen banks, implement

the same negative financial shock, and remeasure the repayments. We compare the banks’ ability

to repay their loans across these two networks that differ by only one link and find substantial

differences in the ability of banks across the whole network to repay their loans. These differences

expand far beyond the new loan. The randomly generated lending networks are calibrated to match

the observed degree distribution of the US lending network described in Soramäki et al. 2007. We

fix all of the loan amounts and interest rates to be the same for every loan so that any changes

in the financial outcomes must be driven by changes in the links of the network rather than by

differences in the individual banks’ loans.

These simulations show that a small error in the network data can lead to enormous changes in

the model’s predicted financial stability. In the presence of the same negative economic shock, two

financial networks that differ by only one loan can see hundreds of millions of dollars difference in

unpaid loans. This means that model predictions can be off by hundreds of millions of dollars. The
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average difference in the number of loan dollars that are repaid is between 5 and 22 million dollars,

depending on how the two networks differ. Even more remarkable than the average differences is

the variability in these differences. The standard deviation of the change in unpaid loan dollars is

between 184 and 234 million dollars. The change in financial outcomes that result from a single

loan varies widely because of the links in the network of lending. Adding, removing, or switching a

link can lead to hundreds more unpaid loans, hundreds of millions more unpaid dollars, and dozens

more bank failures. Small errors in the network data fed into a model can lead to large changes in

model outcomes.

There is currently no data set that describes all of the lending relationships that exist between

the banks in the US lending network. A few researchers have come up with creative ways to estimate

(e.g., Kuo et al. 2013 and Taschereau-Dumouchel 2017) or calibrate and simulate (e.g., Cuenda

et al. 2018 and May, Levin, and Sugihara 2008) the network that describes these relationships. But

as we show in this paper, network outcomes are so discontinuous that even if researchers are able

to estimate a network with 99% of the correct links, that remaining 1% can lead to predicting a

stable economy when, in fact, financial crisis is right around the corner.

Many resources and a great deal of energy have been devoted to preventing another financial

crisis like the one that began in 2008. One of the most important areas of this research is devoted to

analyzing the network of interbank lending through which negative shocks propagate. The structure

of this network - who borrows from whom - plays a large role in financial stability. Missing a single

link - a single loan - in the data can mean measuring hundreds more unpaid loans. Policy-makers

will be made better of by devoting some of these crisis-prevention resources to collecting detailed

data that describes the entire network of interbank loans.

Implementing good financial regulatory policy requires a thorough understanding of the interbank

lending network. If policy makers do not account for the links between banks or do not have

data describing the correct links, policies designed to stabilize the financial sector could actually

destabilize it.

2. Network Model

The focus of this paper is to model the dynamics of loan repayments within the US interbank

lending network and the implications for economic stability. In this model, banks borrow and lend

money to one another. These loans create a network of loans between banks. We use a model
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that incorporates cash flows, senior obligations, and equilibrium repayments. Interruptions to

repayments can set off a chain reaction among interconnected banks. Through the introduction of

missing data scenarios, such as adding or omitting loan links, this paper demonstrates how seemingly

minor data errors can have significant repercussions on repayment cascades. Such cascades can

lead to a surge in unpaid loans and even bank defaults.

We model the behavior of individual banks in the network. Each bank is obligated to repay

its debts to other banks to the extent it can. We adopt a model from Acemoglu, Ozdaglar, and

Tahbaz-Salehi 2015. We denote the face value of a loan from bank i to bank j as yij . Bank j repays

to bank i some number rij between 0 and yij. The value of rij depends on the funds that bank j

has at its disposal. Bank j’s available resources depend not only on its additional cash and the

investments it makes but also on the ability of its debtors to repay their loans. If there is no loan

between two banks in the network, yij = rij = 0. The model therefore describes an equilibrium

repayment network for all of the banks in the system. Our outcome of interest is the total dollars

repaid across the network as a whole:
∑

i,j rij.

The amount banks repay to each other depends upon their current assets and obligations.

Current obligations may prevent them from repaying interbank loans in full. These obligations

consist of payments owed to firms, individuals, and other private and public entities. We denote

these “senior obligations” that banks must repay before their loans as vj . Included in this are taxes,

wages, and rent. All senior obligations must be repaid in full before the payment of interbank

lending can begin. Each bank j has an amount of cash on hand cj, and accumulates a random

return on its individual investment, Aj.

The repayment equilibrium is described by the system of repayment equations for each loan

between bank i and bank j:

rij =
yij
yj

max{min{yj, cj + Aj +
∑
j ̸=s

rjs − v}, 0} (1)

Let a bank’s current assets be hj = cj + Aj +
∑

j ̸=s rjs. A bank’s ability to pay back interbank

loans in full is determined by whether or not hj is sufficient to cover both senior and interbank

obligations. If hj is insufficient to cover the repayment of senior obligations, bank j will be unable

to repay its loan in full. Each bank’s ability to repay other banks in the network is determined

by the repayment quantities and consistencies of other banks. If hj − v > yj, then the bank can

repay all of its total loan debt, yj, in full and therefore repay each loan amount, yij, in full. If
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0 < hj − v < yj , then bank j will repay each bank a fraction of the loan amount due,
(

yij
yj

)
(hj − v).

Finally, if hj − v < 0, the bank defaults on all of its loans since it does not have enough cash on

hand to cover its senior obligations.

2.1. Example

Here, we describe a small example that demonstrates how easily one small change in network

structure can lead to large changes in total repayments. Since each bank relies on the payments

of other banks within the network, the repayment model allows us to quantify the consequences

of loan delinquency for the network as a whole. Suppose Bank 1 loaned to Bank 2 and Bank 2

to Bank 3 and so on, as shown in Figure 1. These loans denoted as y12 and y23 respectively. The

amount that Bank 2 repays Bank 1, r12, depends upon the repayments of Bank 3 to Bank 2 and

Bank 4 to Bank 3, r23 and r34. Suppose Bank 3 is delinquent on its loan due to a low return on its

outside investments A3, meaning the loan from the Bank 2 is not paid back in full. As a result,

Bank 2 does not have enough assets to cover enough senior obligations or to repay their loan in full

from Bank 1, making Bank 2 delinquent on their loan, as seen in Figure 2.

Figure 1: Repayment Example

2 3 41
y12 y23 y34

(a) Network of original loans (yij)

2 3 41
r12 r23 r34

(b) Network of original repayments (rij)

2 3 41

5

r12 r23 r34

r25

(c) Network of new repayments with an added link(rij)

Notes: The index order remains the same between yij and rij while the directionally of the links reverse
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However, consider if, when measuring this network in data, the researcher missed a link in

the network of loans from Bank 2 to Bank 5, y25. If Bank 5 had a good return on their outside

investments and can repay their loan in full, this will allow Bank 2 to repay its loan to Bank 1

in full, preventing the cascading bank failures that could lead to a financial system crash. The

researcher may have incorrectly predicted financial collapse. The outcome could go the other way,

as well: researchers may predict financial stability when cascading financial failures are imminent

simply by missing a link in the network. This example is magnified when we incorporate more

banks into the network.

3. Simulations

To simulate missing data in a network, we add a link between two randomly chosen banks and

compare the total loan repayments across the two networks. Our results come from network

generation simulations that match observable network characteristics such as shape and degree

distribution. Specifically, we calculate the repayment amounts of banks within the network when

faced with an additional, previously unaccounted-for link.

We simulate financial networks in the following ways: We first generate a random network of

loans that aligns with the observable degree distribution. We then find the repayment equilibrium

as defined in Section 2. We then add a loan between two randomly selected banks that did not

already have a loan between them. We then compare repayment equilibria between networks with

and without the added link. We contextualize those results within aggregate economic outcomes.

If we assume this new network with the additional link is the actual network, and the previous

network represents the network that is measured, the disparity in repayment equilibrium can be

interpreted as the result of missing data.

To generate random financial networks that match the degree distribution of the observed US

financial network, we used a Python function called “powerlaw_cluster_graph” from the NetworkX

package (Holme and Kim 2002). This package generates random undirected graphs that exhibit a

specified degree distribution. In order to create a directed network, we generated adjacency matrices

for two undirected networks and built the directed adjacency matrix from the top triangle of one

undirected adjacency matrix and the bottom triangle of the other undirected adjacency matrix.

This created directed networks that matched the specified power law distribution for the network

degrees. The in-degree and out-degree distributions are depicted in Figures 2 and 3, respectively.
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Figure 2: In-Degree Distribution

Notes: The in-degree distribution follows a power-law distribution.

Figure 3: Out-Degree Distribution

Notes: The out-degree distribution follows a power-law distribution.

We measure the total loan dollars that go unrepaid in each repayment equilibrium and refer to

this as the “total shortfall” across each network. We calculate this for both networks and compare

the difference between them. This metric is calculated by subtracting the equilibrium repayment

amount for each loan between bank i and bank j, rij from the amount of money owed, yij.

7



1
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3
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5

6

7

(a) Network Before a Loan is Added

1

2

3

4

5

6

7

(b) Network After a Loan is Added

Figure 4: Adding a Loan Between Two Banks

Notes: In the original network, there is no loan between Banks 2 and 7. In our simulations, the two banks we chose
randomly would be Banks 2 and 7. In the second network, there is now a loan repayment due from Bank 2 to Bank
7.

We calibrate the model parameters to match observable characteristics. We generate random

networks of 100 banks to match the degree distribution of the actual US Interbank lending network

(Soramäki et al. 2007). The parameter values of the individual bank variables used in our simulations

are described in Table 1. We calibrated the cash-on-hand value to match the total cash in vaults

in US banks divided by the number of financial institutions (FRED: Federal Reserve Economic

Data 2024). The senior obligations of the banks are set to the average wage obligations of US

banks each month (IBIS World 2023). The random return on outside investments is drawn from a

Normal distribution with a mean of 10 and a variance of 5, which can be interpreted as a mean of

10 million dollars and a variance of 5 million dollars.

Table 1: Parameter Values

Parameter Value

Cash on hand (c) 15.9

Senior Obligations (v) 2.9

Return on Investment (Aj) normal, 10, 5

We are restricted to simulations that consist of 100-bank networks for computational reasons.
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The system of equations that defines the repayment equilibrium - as described in Section 2 - grows

exponentially with the number of banks. It is computationally impractical to simulate networks

with the full 4706 banks. In a network with n banks, there is the possibility of a loan between any

bank and any other bank. This is the potential for n(n− 1) loans or links in the network, each of

which would define a separate repayment equation. In a network with 100 banks there could be as

many as 100(99) = 9, 900 non-linear equations in 9, 900 unknowns. We found that 100 nodes are

the maximum number of banks that can run in a reasonable amount of time while still yielding

meaningful results. A simulation of 500 repetitions with 100 banks takes approximately one week

to run.

4. Results

Our simulations reveal that a minor change in the network structure, defined by the addition of a

single link, results in substantial changes to network-wide repayments. We find that networks with

an added link experience fewer dollars repaid than the equivalent network before the additional

loan.

We ran 3,000 repetitions of a network experiment. We randomly generated a network with 100

banks, closely matching the degree distribution of the actual US interbank lending network. We

calculate the repayment equilibrium on the network as defined in Section 2 and determine the total

loan repayment shortfall across the whole network. We then add a link between two randomly

selected banks and recalculate the repayment equilibrium and total shortfall. To ensure that the

total shortfalls across each network are comparable, we subtract the repayment amount for the

newly added loan from the shortfall calculation associated with the modified network. As a result,

any change in shortfall amounts is due to the effect of the new link on other banks not the new

link itself. Our outcome of interest is the difference between the total shortfall in loan payments

between the two networks.

Figure 5 depicts the distribution of the effects of the added loan on total loan shortfall. On

average, the network with the additional loans sees about $29 million few dollars repaid. This

difference is statistically different from zero (p-value = 0.000). That is, when the two lending

networks are exactly the same except for a single loan, the total amount of loan repayments that

are made across the network as a whole are statistically significantly different. Interpreted in the

context of modeling, if we estimate the financial outcomes of a network that is only a little different
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than the real-world network, we could estimate significantly incorrect outcomes.

Figure 5: Difference in Unpaid Loan Dollars

Notes: Positive values indicate that the added loan resulted in less repayment, while negative values indicate higher
levels of debt repayment

4.1. Bank Characteristics and Financial Outcomes

To better understand the role of individual banks on changes in aggregate network outcomes,

we regress the measured change in total shortfall on a number of bank characteristics. Table 2

shows the results of these regressions. Specifically, we investigate the characteristics of the banks

affected by the loan added to the network. Bank i lends bank j the additional loan, so bank j

owes bank i 100 million dollars that it did not before. We examine the relationship between the
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randomly generated returns from other projects for both bank j and bank i, measured by Aj and

Ai, respectively. We also include the in-degree and out-degree of both banks, i and j. Model 1

isolates bank i ’s contribution to the outcome variable. Model 2 evaluates only bank j ’s contribution

to the outcome variable. Model 3 incorporates characteristics for both bank i and bank j.

Table 2: Regression Models of Simulations

Dep. Variable: Network Shortfall

Indep. Variable (1) (2) (3)

Intercept −67.4075∗∗∗ 16.1210 −10.5114

(12.0970) (11.1341) (14.5656)

Ai −0.4690 −0.9304

(0.8006) (0.6973)

in-degree i −14.0376∗∗∗ −15.1376∗∗∗

(0.8492) (0.7404)

out-degree i 16.1218∗∗∗ 16.7838∗∗∗

(0.8731) (0.7607)

Aj 1.3470 1.2944∗

(0.7561) (0.6994)

in-degree j 20.8146∗∗∗ 21.4845∗∗∗

(0.8581) (0.7944)

out-degree j −23.3549∗∗∗ −23.9898∗∗∗

(0.8398) (0.7781)

Degrees of Freedom 2996 2996 2993

Residual Std. Error 220.3 207.4 191.8

Multiple R2 0.1043 0.2064 0.3216

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; standard errors in parenthesis

The coefficients for the degree distributions are statistically significant predictors of change in
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network shortfall for each model. In Model 1, the coefficient for bank i ’s in-degree is negative. For

every additional loan that bank i lends out, the resulting effect from the added link will change by

13.68 million dollars in the negative direction. The coefficient for bank i ’s out-degree is positive

but similar in magnitude. For every additional loan that bank i borrows, the added loan results in

a change of 15.59 million dollars in the positive direction.

The omission of a single link within the network significantly heightens the likelihood of

overlooking a loan fully repaid, often involving substantial sums, amounting to tens of millions of

dollars. Despite the ostensibly minimal nature of missing just one link, the disparities in outcomes

can be considerable. The implications are particularly noteworthy in the context of crisis prediction.

These results emphasize the necessity of identification and inclusion of network links to ensure

accurate and precise forecasting.

5. Conclusion

This paper demonstrates the effect missing a single loan can have in the network of interbank

lending. These small network differences can have large consequences. The addition of one loan can

shift repayment equilibrium outcomes by hundreds of millions or even billions of dollars in either

direction. This paper illustrates the importance of having perfect data on the entire network of

interbank loans. If a difference of one loan can precipitate such a large swing in projected outcomes,

having perfect data is all the more important. Correct policy decisions depend on our ability to

understand the financial network. Imperfections in our understanding of the network could cause

us to choose imperfect policy and wrongly project outcomes.
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